

MR 1-9 Storm Drainage Summary

East Mercer Site Development Permit Parcels 1-3 8375 & 8383 East Mercer Way Mercer Island, WA 98040

Minor Modifications April 13, 2018 Updated April 6, 2018

Prepared by Duffy Ellis, P.E.

General:

This storm report summarizing compliance with DOE MR 1-9 requirements is associated with the Site Development Permit for a 3 lot property (but not a plat). This permit mostly constructs a new joint use driveway, utilities, slope regrading, and detention system that will serve not only the private driveway but future parcel 1 house and driveway.

There are three associated building permits related to this Site Development permit that will construct 3 new houses on these legal lots. We have done the engineering for those also. Parcels 2 and 3 will each have their own detention system. The Architect is Ripple Design.

Following is table briefly summarizing compliance with minimum requirements MR1-9 identified below.

MR1 = Preparation of Storm Water Site Plans	See Site Development Planset
MR2 = Construction Storm Water Pollution Prevention Plan	Please see sheet C1.0 TESCP in plan set. We can prepare a separate CSWPPP if requested.
MR3 = Source Control of Pollution	See C1.0 for erosion control plan that will mitigate erosion and sediment discharge from site during construction phase.
	Site is mapped within potential erosion hazard area according to City Geologic Maps. Pangeo opinion is site erosion hazard can be mitigated with best management practices. See page 5 of their report for discussion of this in more detail.

	Design of well and exclosed of the lit
Systems and Outfalls	Project will not substantially alter drainage patterns and outfalls. All runoff ends up in East Mercer Storm/ditch system. Project will have 3 detention systems that collectively mitigate peak discharge rates from site.
MR5 = On-site Stormwater Management	BMP's are currently not recommended and not proposed due to topographic and slope stability concerns clearly expressed by the Geotechnical Engineer, Pangeo. Soils lack cohesion and will require stabilization. Please read the site development permit and soils report for reference. See next page for brief discussion of the BMP list Approach.
MR6 = Runoff Treatment	PGIS exceeds 5,000 sf. A stormfilter proposed. See C2.0 for location. See C3.7 for stormfilter detail. We coordinated stormfilter selection with Stephanie Jacobson at Contech.
MR7 = Flow Control	Detention sizing included in this report meeting the MR 5 sizing protocol for each lot. Parcel 1 sizing was custom sized using SBUH (Hydrology Studio.) Parcels 2 and 3 used Mercer Island Standard sizing table. B soil sizing required.
MR8 = Wetlands Protection	Wetlands exist on upper part of property. See separate critical area permits.
MR9 = Operations and Maintenance	Will provide maintenance sheets on request for detention and storm filter.

Soils and Infiltration Feasibility:

Geology Maps indicate site is underlain by Advanced Outwash and Lawton Clay. Groundwater encountered in several bores. BMP measures are not recommended. Soil improvement is recommended with use a aggregate pier grid.

MR 5 Proposed On-site Stormwater management:

The List Approach (List #1) selection process was applied to site:

Lawn and Landscaped Areas:

• Post-Construction Soil Quality and Depth in accordance BMP T5.13 in Chapter 5 of Volume V of the DOE Manual. Compost-Amended Soil is required.

Roofs:

- Full Dispersion: Infeasible due to lack of 100 LF flowpath
- Downspout Full Infiltration: Despite advanced outwash soils, full infiltration not recommended due to slope stability concerns for this site as discussed in depth in the soils report.
- Rain Garden Not feasible to incorporate for the entry driveway being constructed with Site Development Permit.

Other Hard Surfaces:

- Full Dispersion: Infeasible due to lack of 100 LF flowpath
- Permeable Pavement: Not proposed for entry driveway due to 20% grade plus deep cut slopes into the Lawton Clay.

Storm Report Attachments

- Drainage Narrative
- Drainage Design Summary
- Detention Sizing Calculations Parcel 1 Tank (SBUH)
- Soils Report by Pangeo (see standalone copy)

Page 4 of 2 MR1-9 Drainage Report Site Development Permit Mercer Island, WA 4/13/2018 CES #1337

Drainage Narrative

Site Development Permit Submittal New Horizon Real Estate Co. 3 parcel Development with shared Access

> 8375 & 8383 East Mercer Way Mercer Island, WA 98040

This narrative describes the stormwater design for the above referenced project located off East Mercer Way near the 8300 block. Subject property's lot lines were reconfigured to allow 3 single family parcels. Project is being developed by New Horizon Development LLC. Project architect is Ripple Design based out of Seattle.

Drainage design for these 3 adjacent single family projects that share a new access can best be described by this short summary:

- A site Development Permit will construct a new detention system on parcel 1 that serves parcel 1 house and shared driveway buildout (sized by custom storm routing using SBUH and correction factor)
- Parcel 2 will have its own standalone detention system (sized using MI table)
- Parcel 3 will have its own standalone detention system (sized using MI table)

Detention storage up to the 100 year storm to mitigate for increased runoff rates and volumes caused by increased impervious area. Since each project is under 1.0 acres, this project is subject to an older 1992 design standard. A SBUH program (Hydrology Studio software) was used to determine required orifice sizing and pipe diameter to attenuate peak flows to historic rates for the 2, 10, and 100 year storms. Project site has Type B (Outwash) hydrologic soils. See geotechnical report for reference. Please see the Drainage Memo Design summary that provides a summary of the input and results of SBUH hydrology and detention sizing analysis. See the output from SBUH for more detailed information on sizing including pre and post time of concentrations, runoff curve numbers, stage storage, etc. System is currently oversized for first submittal.

Currently no stormwater MR 5 BMP's are not recommended or proposed at this time due to slope stability and soil constraints. See the drainage report for reference.

Sincerely,

Duffy Ellis, P.E.

Memorandum

April 13, 2018

Re: **Detention Design Summary** Parcel 1 / Site Development Permit Review 83xx East Mercer Way Mercer Island, WA 98040

A stormwater detention system has been sized for the above referenced project in compliance with City of Mercer Stormwater Standards. The following is a summary of the system sized using SBUH and complying with the 1992 sizing requirement. Project is less than 1.0 acres.

Subject detention tank will serve the easterly parcel 2 and shared driveway access. See map for tributary area these calculations are based on.

Gross Site Area	0.26 Acres (See hatched area on map for reference)
Max Impervious Area	0.21 acres
% Impervious	40% (assume max lot coverage)
Design Program for sizing	SCS / SBUH (Hydrology Studio)
Storm Events	2, 10, and 100 year
Number of Orifices	2
CN value pre-development	72 (outwash Group B, revised April 13, 2018)
CN value Post development	96
(weighted)	
Time of Concentration (pre)	20 minutes calculated
Time of Concentration (post)	7.5 minutes
2 year storm allowed release	0.01 cfs (B soil)
10-year storm allowed release	0.03 cfs (B soil)
100-year storm allowed release	0.07 cfs
Soil Type	Type B (revised April 2018)
Detention Pipe Diameter	60-inch diameter
Required Length	65 LF (before correction factor)
Length Current proposed	83 LF (including correction)
Orifice Sizing: lower	See appendix report output & sheet C4.1
Orifice Sizing: upper	See sheet C4.0

Detention Summary

Respectfully,

Duffy Ellis, P.E.

Project Name:

04-13-2018

Basin Model

Hydrology Studio v 2.0.0.52

Hydrology Studio v 2.0.0.52

60-inch Detention

LENGTH NEEDED BEFORE ADJUST.

Stage-	Stora	ge

Underground Chamb	ers	Stage / Storage Table						
Description	Input	Stage (ft)	Elevation (ft)	Contour Area (sɑft)	Incr. Storage (cuft)	Total Storage (cuft)		
Invert Elev Down, ft	10.00		(10)	(0.000	0.000		
Chamber Rise. ft	5.00	0.00	10.00	n/a	0.000	0.000		
		0.27	10.27	n/a	0.00	0.00		
Chamber Shape	Circular	0.53	10.53	n/a	35.0	43.7		
Chambor Span ft	5.00	0.80	10.80	n/a	51.6	95.3		
Chamber Span, it	5.00	1.07	11.07	n/a	62.2	158		
Barrel Length, ft	65.00	1.33	11.33	n/a	69.9	227		
		1.60	11.60	n/a	75.9	303		
No. Barrels	1	1.86	11.86	n/a	80.3	384		
Barrel Slope, %	0.50	2.13	12.13	n/a	83.3	467		
		2.40	12.40	n/a	85.3	552		
Headers, y/n	No	2.66	12.66	n/a	86.2	638		
Stone Encasement, y/n	No	2.93	12.93	n/a	86.2	725		
	0.00	3.20	13.20	n/a	85.4	810		
Encasement Bottom Elevation, ft	0.00	3.46	13.46	n/a	83.2	893		
Encasement Width per Chamber, ft	0.00	3.73	13.73	n/a	80.3	974		
	0.00	3.99	13.99	n/a	75.8	1,049		
Encasement Depth, ft	0.00	4.26	14.26	n/a	69.9	1,119		
Encasement Voids, %	40.00	4.53	14.53	n/a	62.3	1,181		
		4.79	14.79	n/a	51.5	1,233		
		5.06	15.06	n/a	34.9	1,268		
		5.33	15.33	n/a	8.65	1,277		

Hydrology Studio v 2.0.0.52

60-inch Detention

04-13-2018

Stage-Discharge

Hydrology Studio v 2.0.0.52

60-inch Detention

Stage-Storage-Discharge Summary

Stage	Elev.	Storage	Culvert	Culvert Orifices, cfs Riser			Weirs, cfs		Pf Riser Exfil		User	Total		
(ft)	(ft)	(cuft)	(cfs)	1	2	3	(cfs)	1	2	3	(cfs)	(cfs)	(cfs)	(cfs)
0.00	10.00	0.000	0.00	0.00	0.00		0.00							0.00
0.27	10.27	8.68	0.005 ic	0.005	0.00		0.00							0.005
0.53	10.53	43.7	0.007 ic	0.007	0.00		0.00							0.007
0.80	10.80	95.3	0.009 ic	0.008	0.00		0.00							0.008
1.07	11.07	158	0.010 ic	0.010	0.00		0.00							0.010
1.33	11.33	227	0.011 ic	0.011	0.00		0.00							0.011
1.60	11.60	303	0.012 ic	0.012	0.00		0.00							0.012
1.86	11.86	384	0.013 ic	0.013	0.00		0.00							0.013
2.13	12.13	467	0.014 ic	0.014	0.00		0.00							0.014
2.40	12.40	552	0.014 ic	0.014	0.00		0.00							0.014
2.66	12.66	638	0.016 ic	0.015	0.00		0.00							0.015
2.93	12.93	725	0.016 ic	0.016	0.00		0.00							0.016
3.20	13.20	810	0.017 ic	0.017	0.00		0.00							0.017
3.46	13.46	893	0.028 ic	0.017	0.011		0.00							0.028
3.73	13.73	974	0.038 ic	0.018	0.020		0.00							0.038
3.99	13.99	1,049	0.044 ic	0.019	0.026		0.00							0.044
4.26	14.26	1,119	0.050 ic	0.019	0.030		0.00							0.050
4.53	14.53	1,181	0.054 ic	0.020	0.035		0.00							0.054
4.79	14.79	1,233	0.061 ic	0.020	0.038		0.00							0.059
5.06	15.06	1,268	0.064 ic	0.021	0.042		0.00							0.063
5.33	15.33	1,277	0.105 ic	0.021	0.045		0.039							0.105

Hydrology Studio v 2.0.0.52

Q

60-inch Detention

04-13-2018

Hydrograph by Return Period

		Lively a work				Peak Out	flow (cfs)			
Hya. No.	Hydrograph Type	Name	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr
1	NRCS Runoff	Parcel 1 Ex		0.005			0.031			0.072
2	NRCS Runoff	Parcel 1 Proposed		0.107			0.173			0.238
				E	XRAT	ES BA	SED	1		
					ON TYF	PEBS	OILS			

Hydrograph 2-yr Summary

04-13-2018	
------------	--

ydrology St	tudio v 2.0.0.52							04-13-2
Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Parcel 1 Ex	0.005	16.93	276			
2	NRCS Runoff	Parcel 1 Proposed	0.107	7.90	1,486			

Hydrology Studio v 2.0.0.52

Parcel 1 Ex

04-13-2018

Hydrology Studio v 2.0.0.52

Parcel 1 Proposed

04-13-2018

Storm Distribution: NRCS/SCS - Type IA

Storm				Total Rainfal	l Volume (in)				
Duration	1-yr	√ 2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	
24 hrs	0.00	2.00	0.00	0.00	3.00	3.00	0.00	4.00	

	Incremental Rainfall Distribution, 2-yr											
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)			
6.80	0.0041	7.17	0.0051	7.53	0.0136	7.90	0.0157	8.27	0.0071			
6.83	0.0042	7.20	0.0053	7.57	0.0143	7.93	0.0154	8.30	0.0068			
6.87	0.0042	7.23	0.0054	7.60	0.0148	7.97	0.0150	8.33	0.0065			
6.90	0.0043	7.27	0.0055	7.63	0.0152	8.00	0.0145	8.37	0.0062			
6.93	0.0044	7.30	0.0057	7.67	0.0155	8.03	0.0101	8.40	0.0060			
6.97	0.0045	7.33	0.0058	7.70	0.0158	8.07	0.0096	8.43	0.0058			
7.00	0.0046	7.37	0.0060	7.73	0.0160	8.10	0.0091	8.47	0.0056			
7.03	0.0047	7.40	0.0062	7.77	0.0161	8.13	0.0086	8.50	0.0054			
7.07	0.0048	7.43	0.0064	7.80	0.0161	8.17	0.0082	8.53	0.0066			
7.10	0.0049	7.47	0.0065	7.83	0.0160	8.20	0.0078	8.57	0.0060			
7.13	0.0050	7.50	0.0067	7.87	0.0159	8.23	0.0074	8.60	0.0059			

Hydrograph 10-yr Summary

Hydrology Studio v 2.0.0.52

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Parcel 1 Ex	0.031	8.13	763			
1	NRCS Runoff	Parcel 1 Ex Parcel 1 Proposed	0.031	8.13 7.90	763 2,409			

Project Name:

Hydrology Studio v 2.0.0.52

Parcel 1 Ex

04-13-2018

Hydrology Studio v 2.0.0.52

Parcel 1 Proposed

Project Name:

04-13-2018

Storm Distribution: NRCS/SCS - Type IA

Storm Duration	Total Rainfall Volume (in)								
	1-yr	2-yr	3-yr	5-yr	√ 10-yr	25-yr	50-yr	100-yr	
24 hrs	0.00	2.00	0.00	0.00	3.00	3.00	0.00	4.00	

			Incremental Rainfall Distribution, 10-yr										
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)				
6.80	0.0062	7.17	0.0077	7.53	0.0205	7.90	0.0235	8.27	0.0106				
6.83	0.0063	7.20	0.0079	7.57	0.0215	7.93	0.0231	8.30	0.0101				
6.87	0.0064	7.23	0.0081	7.60	0.0222	7.97	0.0225	8.33	0.0097				
6.90	0.0065	7.27	0.0083	7.63	0.0228	8.00	0.0218	8.37	0.0093				
6.93	0.0066	7.30	0.0085	7.67	0.0233	8.03	0.0152	8.40	0.0089				
6.97	0.0067	7.33	0.0088	7.70	0.0237	8.07	0.0143	8.43	0.0086				
7.00	0.0069	7.37	0.0090	7.73	0.0240	8.10	0.0136	8.47	0.0083				
7.03	0.0070	7.40	0.0093	7.77	0.0241	8.13	0.0129	8.50	0.0081				
7.07	0.0072	7.43	0.0095	7.80	0.0241	8.17	0.0123	8.53	0.0099				
7.10	0.0073	7.47	0.0098	7.83	0.0240	8.20	0.0117	8.57	0.0090				
7.13	0.0075	7.50	0.0101	7.87	0.0238	8.23	0.0111	8.60	0.0088				

Hydrograph 100-yr Summary

Hydrology Studio v 2.0.0.52

Hyd. No.	Hydrograph Type	Hydrograph Name	Peak Flow (cfs)	Time to Peak (hrs)	Hydrograph Volume (cuft)	Inflow Hyd(s)	Maximum Elevation (ft)	Maximum Storage (cuft)
1	NRCS Runoff	Parcel 1 Ex	0.072	8.07	1,378			
2	NRCS Runoff	Parcel 1 Proposed	0.238	7.90	3,341			

Project Name:

Hydrology Studio v 2.0.0.52

Parcel 1 Ex

04-13-2018

Hydrology Studio v 2.0.0.52

Parcel 1 Proposed

Project Name:

04-13-2018

Storm Distribution: NRCS/SCS - Type IA

Storm Duration	Total Rainfall Volume (in)								
	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	√ 100-yr	
24 hrs	0.00	2.00	0.00	0.00	3.00	3.00	0.00	4.00	

	Incremental Rainfall Distribution, 100-yr										
Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)	Time (hrs)	Precip (in)		
6.80	0.0082	7.17	0.0103	7.53	0.0273	7.90	0.0313	8.27	0.0142		
6.83	0.0084	7.20	0.0105	7.57	0.0286	7.93	0.0307	8.30	0.0135		
6.87	0.0085	7.23	0.0108	7.60	0.0296	7.97	0.0300	8.33	0.0129		
6.90	0.0086	7.27	0.0111	7.63	0.0304	8.00	0.0291	8.37	0.0124		
6.93	0.0088	7.30	0.0114	7.67	0.0311	8.03	0.0203	8.40	0.0119		
6.97	0.0090	7.33	0.0117	7.70	0.0316	8.07	0.0191	8.43	0.0115		
7.00	0.0091	7.37	0.0120	7.73	0.0319	8.10	0.0182	8.47	0.0111		
7.03	0.0093	7.40	0.0124	7.77	0.0321	8.13	0.0173	8.50	0.0108		
7.07	0.0096	7.43	0.0127	7.80	0.0322	8.17	0.0164	8.53	0.0132		
7.10	0.0098	7.47	0.0131	7.83	0.0321	8.20	0.0156	8.57	0.0121		
7.13	0.0100	7.50	0.0135	7.87	0.0318	8.23	0.0149	8.60	0.0118		

volume correction factor

STORMWATER MANAGEMENT MANUAL FOR THE PUGET SOUND BASIN

runoff curve number table, type C Soils

Per the City of Mercer use 100% Forested for existing conditions with a CN=81

		Table 2	.2					
Runoff Curve N	umbers for Sele	cted Agric	ultural, Suburban,	and Urba	in Areas	5		
(Sources: TR 55, 198	6, and Stormwater N	lanagement N	Aanual, 1992. See Sectior	12.1.1 for e	xplanatior	1)		
	:4:			CNs for hy	drologic s	scil gro	up D	
Cover type and hydrologic cond	ition.	C. D. D.		А	В	C	D	
Destance succedend on non-co-	Curve Number	s for Pre-Dev	velopment Conditions					
Fasture, grassland, or range-con	tinuous forage for g	grazing:		40	60	70	94	
Good condition (ground cover >75	% and lightly or only	ny grazeu).	w grazad)	49 30	61	79	04 80	
Woods	39	01	/4	- 80				
Fair (Woods are grazed but not but	36	60	73	70				
Good (Woods are protected from s	30	55	73	77 77				
Good (Woods are protected from g	Curve Numbers	for Post-De	velopment Conditions	50	55	70	,,	
Open space (lawns, parks, golf c	ourses cometeries	landscaning	etc.) ¹					
Fair condition (grass cover on 50%	- 75% of the area)	lanuscaping,	cit.)	77	85	90	92	
Good condition (grass cover on >7	5% of the area)			68	80	86	90	
Impervious areas:	570 of the treat			00	00	00	70	
Open water bediege lakes, wetland	nonda ata			100	100 7	1100	100	
Deved perking lots, roofs ² driveys	s, ponus etc.	right of way)		100	100	100	100	
Parmapha Payament (See A prov	div C to decide wh	ight-or-way)	holow to uso)	90		90	90	
Landscaped area	iuix C to decide wil		i below to use)	77 /	85	90	02	
50% landscaped area/50% impervi	0118			4	0J 01	94	96	
100% impervious area	ous			98	98	98	98	
Paved				98	98	98	98	
Gravel (including right-of-way)	76	85	89	91				
Dirt (including right-of-way)	70	82	87	89				
Pasture grassland or range-continu	12	02	07	07				
Poor condition (ground cover <50% or	68	79	86	89				
Fair condition (ground cover 50% to 7:	49	69	79	84				
Good condition (ground cover >75% at	39	61	74	80				
Woods:								
Poor (Forest litter, small trees, and	brush are destroyed	by heavy gra	zing or regular burning).	45	66	77	83	
Fair (Woods are grazed but not but	med, and some fores	t litter covers	the soil).	36	60	73	79	
Good (Woods are protected from g	grazing, and litter and	l brush adequ	ately cover the soil).	30	55	70	77	
Single family residential':	Should only	be used for	Average Percent	34				
Dwelling Unit/Gross Acre	subdivisions	> 50 acres	impervious area	,,, ,				
1.0 DU/GA	[-		15	Sej	parate curve	e numbe	r	
	those velues	upod to	$\frac{20}{25}$	SII	vious & im	perviou	¢	
2.5 DU/GA	linese values	useu lo	30	pervious & impervious			3	
3.0 DU/GA	compute pre	and post	34	bas	sin	one or		
3.5 DU/GA	development	runoff	38					
4.0 DU/GA	lrates		42					
4.5 DU/GA 46								
5.0 DU/GA			48					
5.5 DU/GA 50								
6.0 DU/GA 52								
7 0 DU/GA 56								
7.5 DU/GA 58								
PUD's condos anartments comm	ercial	%imner	vious Senarate curv	e numbers o	shall			
businesses, industrial areas &	ereiui	must he	be selected fo	r pervious	and			
& subdivisions < 50 acres		compute	ed impervious po	ortions of th	e site			
For a more detailed and complete descri	ription of land use curv	e numbers refe	r to chapter two (2) of the So	il Conservat	on Service	's Techr	nical	
Release No. 55, (210-VI-TR-55, Second	nd Ed., June 1986).		1					

¹ Composite CN's may be computed for other combinations of open space cover type.

²Where roof runoff and driveway runoff are infiltrated or dispersed according to the requirements in Chapter 3, the average percent impervious area may be adjusted in accordance with the procedure described under "Flow Credit for Roof Downspout Infiltration" (Section 3.1.1), and "Flow Credit for Roof Downspout Dispersion" (Section 3.1.2).

³Assumes roof and driveway runoff is directed into street/storm system.

⁴All the remaining pervious area (lawn) are considered to be in good condition for these curve numbers.

N value, time of concentration reference

STORMWATER MANAGEMENT MANUAL FOR THE PUGET SOUND BASIN

Table III-1.4 "n" AND "k" Values Used in Time Calculations for Hydrographs "n." Sheet Flow Equation Manning's Values (for the initial 300 ft. of travel) n. Smooth surfaces (concrete, asphalt, gravel, or bare hand packed soil) Sheet flow, drive, post-dev 0.011 Fallow fields or loose soil surface (no residue) 0.05 0.06 Cultivated soil with residue cover (s≤ 0.20 ft/ft) Cultivated soil with residue cover (s> 0.20 ft/ft) 0.17 Short prairie grass and lawns 0.15 Dense grasses 0.24 Sheet Flow, forested, pre-dev Bermuda grass 0.41 Range (natural) 0.13 Woods or forest with light underbrush 0.40 Woods or forest with dense underbrush 0.80 *Manning values for sheet flow only, from Overton and Meadows 1976 (See TR-55, 1986) "k" Values Used in Travel Time/Time of Concentration Calculations Shallow Concentrated Flow (After the initial 300 ft. of sheet flow, R = 0.1) k, 1. Forest with heavy ground litter and meadows (n = 0.10) 3 2. Brushy ground with some trees (n = 0.060)5 8 з. Fallow or minimum tillage cultivation (n = 0.040)4. High grass (n = 0.035)9 Short grass, pasture and lawns (n = 0.030)5. 11 Nearly bare ground (n = 0.25)13 6. 7. Paved and gravel areas (n = 0.012)27 Channel Flow (intermittent) (At the beginning of visible channels R = 0.2) k_c 1. 5 Forested swale with heavy ground litter (n = 0.10)2. Forested drainage course/ravine with defined channel bed (n = 0.050)10 з. Rock-lined waterway (n = 0.035) 15 4. Grassed waterway (n = 0.030)17 5. Earth-lined waterway (n = 0.025)20 6. CMP pipe (n = 0.024)21 7. Concrete pipe (0.012) 42 8. Other waterways and pipe 0.508/n Channel Flow (Continuous stream, R = 0.4) \mathbf{k}_{c} 9. Meandering stream with some pools (n = 0.040)20 Rock-lined stream (n = 0.035)10. 23 **Grass-lined stream** (n = 0.030)27 11. Other streams, man-made channels and pipe 0.807/n** 12.